• May 26, 2025

Can I Use Streamlit In Production?

Can I Use Streamlit In Production?

Streamlit is a Python open-source framework intended for the construction of interactive web applications for data science and machine learning applications. 

Streamlit was created with ease in mind, allowing developers and data scientist to convert Python code into sharable web applications without any effort and frontend development know-how.

Streamlit applications are coded in plain Python with easy, declarative directives. It is possible for users to include widgets such as sliders, buttons, file uploaders, and charts in a matter of a few lines. This makes it particularly valuable for creating dashboards, model demonstrations, and exploratory data analysis interfaces rapidly.

One of the strengths of Streamlit is that it is extremely easy to use. Whenever the user touches a widget, it reruns the script from the top down automatically and, in real time, updates the UI. It also natively supports common data viz libraries like Matplotlib, Plotly, Altair, and Seaborn so that users can easily embed existing plots.

Streamlit is best for internal tools, prototyping quickly, and communicating machine learning models with non-technical stakeholders. It is not the best fit for sophisticated production applications because of the limited customization options, the absence of sophisticated routing, and performance issues under heavy traffic.

Streamlit apps can be deployed quickly using Streamlit Cloud or other platforms such as Heroku and AWS. It is well-supported and actively maintained by an expanding pool of developers and researchers.

Why Streamlit is Generally Not Used In Production?

(1) Low Customization

Streamlit is excellent at rapid creation of basic web apps using Python, particularly for data science or ad-hoc demos. 

However, when it comes to customization and user interaction, it falls woefully short compared to newer frameworks such as React or Vue.

One of the most significant drawbacks is that Streamlit does not handle custom CSS easily.

So, if you desire a highly specific appearance and feel for your app,such as branded styling, animations, or responsive layouts,you’ll be disappointed. You’re largely limited to the default UI components Streamlit gives you.

But now, in today’s world of the web, users demand more. Interactive, clean, and responsive interfaces are no longer a plus, now they’re a necessity.

Websites must be engaging, personalized, and dynamic in order to sustain user interest and provide improved experiences. This is where frameworks such as React come in. 

With React, you have complete control of the frontend—you can style it all with CSS, create custom components, support complicated interactions, and talk to APIs however you please.

Streamlit vs Dash: Which is Better?
Streamlit vs Gradio:Which is Better?
Plotly vs Streamlit: Which is Better?
Flask vs Streamlit: Which is Better?



So, if you’re creating a serious web application where design, customization, and user experience count a lot, then Streamlit is not the tool to use. It’s perfect for internal tools and prototypes, but for production applications or anything customer-facing, React is far superior.

It may take longer to learn and to set up, but the long-term flexibility and power you receive are completely worth it. In short, if your application must appear sleek and act like a contemporary web application, use React instead of Streamlit.

(2) Modularization Not Available

Something that’s really vital for web development these days is modularization—dividing your app up into neat, reusable components. It’s used to handle complexity, makes the codebase easier to maintain, and lets teams grow apps with ease. 

However, the catch is that Streamlit doesn’t natively support modularization very well. You can divide your code up into functions or into separate Python files, but it’s hardly as structured or robust as component-based systems you see with React or other JS frameworks.

I actually met a very seasoned Streamlit programmer who spoke about this very problem.

He explained that current web applications gain a great deal from user interaction—live updates, form validation, several states of the user, routing, and interactive elements. That’s where Streamlit begins to break down.

It repeats the whole script top-to-bottom whenever a user inputs something into a widget. For small apps, okay, but for anything complex, it’s inefficient and difficult to manage.

He also mentioned something that has stuck with me: Streamlit is perfect for when you need to show something off once quickly—like a demo of a machine learning model or an internal-facing dashboard.

It’s easy, it’s quick, and it’s Python-based, which is wonderful for data scientists. But once your app must be dynamic, reactive, or user-controlled, you run into the limits.

That’s when you should always turn to a JavaScript framework such as React. React is built from the ground up for dynamic interaction, custom components, and tidy modular architecture.

So yes, Streamlit has its niche, but if you’re planning long-term or want a rich user experience, React is always the winner.

(3) Low Community Support

Another large reason Streamlit is not the best option for most developers, particularly when developing production-ready web applications, is poor community support. Don’t get me wrong,Streamlit does have a supportive and active community, but it’s still relatively small compared to the enormous ecosystems of frameworks like React or Vue.

With frameworks like JavaScript’s React, the community is large and mature. What that really means is if you encounter a bug, likely someone’s already encountered it, worked it out, and shared the answer online—in one of those places like Stack Overflow, GitHub, blog sites, or Reddit. 

Furthermore, there are plenty of tutorials, libraries, tools, and UI components created by the community. All of this makes development and debugging a whole lot simpler and quicker.

But with Streamlit, you usually don’t have that luxury. Because the ecosystem is smaller, you may not have ready solutions or detailed documents for more complex use cases. 

And that can be infuriating, particularly when you’re trying to do something bespoke or encounter bugs. You could end up investing a lot more time piecing things together yourself.

That is precisely one of the primary motivations for why most developers, particularly frontend or full-stack developers, prefer React compared to Streamlit.

React’s enormous community implies quicker problem-solving, improved learning resources, and additional third-party integrations. It’s merely easier to build and grow real-world applications with such a mighty community to back you up.

So,even though Streamlit might be better for rapid prototypes, ultimately a solid community such as React’s makes a huge productivity, support, and scalability difference.

(4) API Handling

When it comes to constructing enterprise-level applications, Streamlit has its limitations. 

Although it’s an incredible tool for rapidly bootstrapping data applications or machine learning demonstrations, counting on it to host RESTful APIs or sophisticated enterprise applications is not advisable. 

For one, its inability to deal with network outages, concurrency, and session management is a problem, all of which are paramount in production scenarios. Not solving these could lead to partial or complete service outages and impact your business and your users.

That being said, if you’re just starting to learn machine learning, AI, or you’re a startup and you want to prototype quickly and get your ideas out there, Streamlit really is a good place to start. It lets you go fast without concerning yourself too much with frontend code, which is perfect at the early stages.

But as you continue on, pick up steam, and get ready to scale, particularly when you’re about to start dealing with real-world users, you’ll want to transition to something more heavy-duty. 

One good strategy is to develop your frontend with React (or Vue), which provides superior performance, interactivity, and flexibility.

Then fuel your backend with Python with Flask or FastAPI, which are solid at managing RESTful APIs and mesh well with your current Python-based ML pipelines.

Final Conclusion on Can I Use Streamlit In Production?

We really hope that you have liked this article really very much. Kindly, please share the same with your friends and family too.

Leave a Reply

Your email address will not be published. Required fields are marked *